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A Comparison of Predictors For First-Guess Wind Speed Errors

by P. A. Jacobs and D. P. Gaver

Abstract

Numerical meteorological models are used to assist in the prediction of

weather. Each run of a numerical model produces forecasts of

meteorological variables which are used as preliminary predictions of

the future values of these variables. These initial predictions are

referred to as first-guess values. Estimation of the mean-square first-

guess error is required in the optimal interpolation process in the

numerical prediction of atmospheric variables. Several predictors for

the mean-square error of the first-guess wind speeds are studied. The

results suggest that prediction using observed covariates tend to be

better than those using first-guess covariates. However, observed

covariates are not always available. Predictions using first-guess

covariates are better at the 250 mb level than the 850 or 500 mb levels.

Of those first-guess covariates studied, first-guess wind speed appears to

be the best.

1. INTRODUCTION AND SUMMARY

Numerical meteorological models are used to assist in the prediction of

weather. Each run of a numerical model produces forecasts of meteorological

variables which are used as preliminary predictions of future values of these

variables. These initial predictions are referred to as first-guess values. In this

paper first-guess values will refer to the most recent 12-hour forecasts.

In certain areas of the world, observations of forecasted variables become

available. Prior to the next run of the numerical model a multivariate

optimal interpolation analysis updates a first-guess value of a variable by
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adding to it a weighted observed value of the variable if it is available. The

weight multiplying the observed value depends on estimates of the mean-

squared error of the first-guess value and the mean-squared error of the

observation; cf. Goerss et al., [1991, a, b]. Thus it is of importance to predict the

first-guess mean-squared errors.

The general problem of modeling and predicting mean-square errors is

important but not widely studied; see Davidian and Carroll (1987), Nelder and

Lee (1992), Aitken (1987), McCullagh and Nelder (1983).

In Jacobs and Gaver (1991, 1992) statistical models for the error of the first

guess are used to predict mean-square error for first-guess wind components.

The models assume that the error of the first guess has a normal distribution

with mean 0 and variance which is a function that is log-linear with

covariates. Details of the model are presented in Appendix A.

In this paper we use data from February 1991 to compare the predictive

ability of various models. The data consist of measurements and 12 hour

forecasts (first-guess values) of u and v wind components at the 850 mb, 500

mb and 250 mb pressure levels from 93 stations in North America 25N-75N

for the month of February 1991. The forecasts are produced using the

NOGAPS Spectral Forecast Model; cf. Hogan et al., (1991). Each station has

measurement and first-guess values for every 12 hours; there are some

missing observations. These missing values are deleted from the data set. The

measurement values are subtracted from the first-guess values to obtain

observations of the error of the first-guess value.

Let U(o;t), (respectively V(o;t)), be the observed u-wind, (respectively

v-wind) component at time t. Let U(f;t), (respectively V(f;t)), be the first-guess

u-wind (respectively v-wind) component at time t; U(f;t), (respectively V(f;t))
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is the forecasted value of the u-wind (respectively v-wind) component made

12 hours previously. The first-guess error for the u-wind (respectively v-

wind) component is

Yu(t) = U(f;t) - U(o;t); (respectively Yv(t) = V(ft) - V(o;t)). (1.1)

The following covariates are considered in the log-linear model for the mean-

square error of the first guess.

r(o; t) = [(U(o; t) _ U(o; t _ 1))2 + (V(o; t) _ V(o; t _ l))2 2 (1.2)

w(o; t) = [u(o; t)2 + V(o;t) 2]2 (1.3)

rf t)=[(U(f; t) - Uf; t - 1))2 + (V(f; t)- V(f; t - (1.4)

w~~)=[U(f; t)2 + 1~f (1.5

W~V f t) 2]2

r *(t) = [(LI(f; t) _ U(o; t _ 1))2 + (V(f; t) -V(o; t _ 1)) 2]12 (1.6)

a(o,U;t)= LU(o;t)-U(o;t-1), a(o,V;t)=IV(o;t)- V(o,t-1) (1.7)

a(fU;t) = IU(f;t)-u(f;t-1, a(fV;t)=IV(f;t)-V(ft- 1 (1.8)

a*(U;t)=ju(f;t)-U(o;t-1i, a*(V;t)=IV(f;t)-V(o,t-1) (1.9)

m(f;t) = max(U(f;t),V(f;t)) (1.10)
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The resultant wind r(o;t), (respectively r(f;t) and r(t)), is a measure of the

observed (respectively forecasted), change in the wind. The variable w(o;t),

(respectively w(f;t)), is the observed, (respectively forecasted), wind speed.

Higher wind speeds suggest more activity in the atmosphere. The change in

magnitudes a(o,U;t), a(fU;t) and a°(U;t) (respectively a(o,V;t), a(fV;t) and

a°(V;t) will be used to predict Yu(t), (respectively Yv(t)).

The data are randomly divided into two sets called DA and DB.

Maximum likelihood estimates of the parameters of the models using

different covariates are computed using data DA (respectively DB).

Nonparametric models based on binning are also considered. The models are

then used to predict the mean-square first-guess errors in data set DB

(respectively DA). Log-likelihood functions and the empirical distribution of

the first-guess errors normalized by their predicted mean-square errors are

used to evaluate the models' predictive ability. Details are given in Section 2.

In general, models which use observed covariates, e.g. w(o), a(o), have

more predictive ability than those that use first-guess covariates, e.g. w(f), a(f),

m(f). The models applied at the 250 mb level appear to have more predictive

ability than those for 500 mb and 850 mb.

Among the one-variate models for the 250 mb pressure height, the

models that statistically appear to have the most predictive ability have as

their covariate w(o), a(o) or r(o). Those that have less but some predictive

ability have as their covariate a*, w(f), m(f) or r°. Finally, one-variate models

using variates r(f) and a(f) appear to have little predictive ability. Among

those models for the 250 mb pressure height that use one first-guess covariate,

m(f) or w(f) appear to have the most predictive ability.
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2. THE DATA ANALYSIS

In this section we describe the data analysis. Let Ui(o;t) and Ui(f;t),

(respectively Vi(o;t) and Vi(f;t)) be the observed and first-guess u-wind

(respectively v-wind) component at location i = 1, ... , S at time t. By data we

mean the vector (Ui(o,t), Ui(f,t), Vi(o,t), Vi(f,t), Ui(o,t-1), Ui(ft-1), Vi(o,t-l),

Vi(ft-1)). The data set contains missing values. Vectors containing these

missing values are deleted from the data set. Once missing values are deleted,

there are 3618 vectors at the 850 mb level, 4100 at the 500 mb level, and 3744 at

the 250 mb level. The observed values are subtracted from the first-guess

values to obtain observations of the first-guess errors for each wind

component

Yi(U;t) = Ui(f;t)-Ui(o;t)

Yi(V;t) = Vi(f;t)- Vi(o; t).

The remaining data are randomly divided into two sets called DA and DB

without regard to the values of the data, the time t, or the location. Thus, data

from the same location for different times may be in different data sets.

Models are estimated for each pressure level using only covariates for that

pressure level. The covariates considered for each wind component appear in

Appendix B. The general statistical model is described in Appendix A.

The model is estimated using data sets DA, DB, and all the data for each

pressure level. The estimated values for the parameters for selected models

appear in Tables 3A, 4A, 3B, 4B, 3C and 4C. Note that the parameter estimates

are usually positive. Hence increased values of the covariates are associated

with higher variance of the first-guess errors.

The models estimated from DA (respectively DB) are used to predict the

first-guess errors in data set DB (respectively DA). One measure used for
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assessing a model's goodness of fit and predictive ability is the value of i, the

log-likelihood function up to addition of constants given in Appendix A

(A.4); the log-likelihood for predicting mean-square errors in DB using a

model estimated using DA uses the first-guess error and covariate(s) from DB

and the parameter estimates from DA. Values of i are computed for data DA

(respectively DB) using the parameters estimated using DB (respectively DA);

these values assess each model's predictive ability. Values of i are also

computed for data DA (respectively DB) using parameters estimated using DA

(respectively DB); these values assess each model's goodness of fit.

Tables 1A, 1B, 1C present the values of £ for one-variate models for the

different pressure levels. Also displayed are the values of i for a model in

which the first-guess errors are independent normally distributed with mean

0 and constant variance ea.

Tables 2A, 2B, 2C present values for i for two-variate models.

Compare the value of ec for the model with constant variance (no

covariates) for DA (respectively DB) fit using DA (respectively DB) with the

values of i for DA (respectively DB) using models with parameters estimated

using the other half of the data DB (respectively DA). A value of i greater

than ic indicates that the corresponding model fit with the other half of the

data describes the data better than the best constant variance model fit with

the same data it is used to summarize. For 850 mb data those one-variate

models for which i > ?c for DA and DB for both wind components are those

with variate r*, a*, r, and w(o). For 500 mb the one-variate models are those

with variate r°, a(o), r, w(o), and w(f). For 250 mb, the models are those with

variate r°, a(o), r, w(o), w(j), and m(W.
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To compare the predictive ability of the models, the fraction of increase in

Q - ic)Rcj is computed where 1c is the maximum value of I for the

constant variance model (with no covariates) estimated using data DA

(respectively DB) compared to the value of i for DA using one-variate

models estimated using the other half of the data DB (respectively DA). The

values of percentage of increase appear in Table 5 for the one-variable models

with variate r*, a*, r, w(o), w(f), and m(f). Note that the fraction increase tends

to be larger for the 250 mb for the covariates using observed data, r, w(o), and

a(o). The fraction also tends to be larger for the first-guess covariates w(f) and

m(f) at the 250 mb level.

Another measure of predictability is the distribution of the first-guess

errors divided by their predicted standard deviations. Table 6 displays the

moments of the first-guess errors of the wind components DA (respectively

DB) divided by the standard deviations that are predicted for it using the

model fit using data of DB (respectively DA). Recall that the models assume

that these errors are normally distributed with mean 0. Thus, if a model were

perfect then the mean (respectively standard deviation, skewness, and

kurtosis) of the normalized first-guess errors would be 0, (respectively 1, 0 and

3). Of particular interest is the kurtosis. In this application, the kurtosis can be

thought of as a measure of the variability of the variance (cf. Cramdr page

356). Hence, the smaller the kurtosis, the better tie prediction of the model.

Table 6 presents not only results for the model of Appendix A with

various covariates but also results for a nonparametric one-variate model.

This nonparametric model is as follows. The data in DA (respectively DB) are

binned into N bins according to the value of the ordered covariate. For each

bin, the mean of the square of the wind speed errors corresponding to the
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covariates in that bin is computed. To evaluate the predictive ability of the

model, the other data set DB (respectively DA) is used. The predicted mean-

square error for a data point in DB (respectively DA) is the mean of the square

of the wind speed errors for the bin determined from DA (respectively DB)

the data point's covariate lies in.

Table 6 presents selected results using data for the 250 mb level. Results

for parametric models of Appendix A with parameters estimated by

maximum likelihood (MLE) and the nonparametric models with bins are

presented. Also displayed are the sample moments of the first-guecs errors in

the row labeled "none". Displayed in the row labeled "constant" are the

sample moments for the first-guess errors divided by the predicted standard

deviation for a model with constant viriance ea fit using the other half of the

data.

The values of the kurtosis suggest the following. Once again, models

using the observed covariates a(o) and r(o) appear to make the best predictors.

Among the first-guess covariates, m(f) and w(f) appear to have comparable

predictive ability. If a nonparametric model using a first-guess variate is being

considered, then using first-guess wind speed as the covariate seems to be a

good choice.
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APPENDIX A

THE STATISTICAL MODEL

In this Appendix we describe the statistical model. Let Ui(o;t) (respectively

Vf(f;t)) denote the observed u-wind component (respectively first-guess wind

component) at location i at time t; i = 1, ... , S. Let Vi(o;t), (respectively Vj(f;t))

denote the observed v-wind component (respectively first-guess wind

component) at location i at time t. The first-guess error of the u-wind

(respectively v-wind) component at location i at time t is

Yj(u;t) = uj(o;t)- uj(f;t)

(respectively, (A.1)

Y,(V;t = Vi(o;t)- V1(;)).

The model is that (Yi(U;t), i = 1, ... , S) and IYi(V;t), i = 1, ... , S) are

independent random variables having a normal distribution with mean 0.

The variance of Yi(U;t) is log-linear with a number of covariates. That is

Var[Yi (U; t Xi (1; t) = xi(1,..Xi (P; t) = xi (p)]

exa p . (A.2)
+exp X+ j(t)xi(j;t .

The likelihood function for this model is (up to multiplication by

constants)

-II-ex{- [a + PI3j (t)xi(j; t) exp{- y2 exp a + (.,pjAtxiAU;t)
t i L . " j=1

The log-likelihood function is (up to addition by constants)

10



4 1 ( (A.4)
+I- fi 3(t)x ( j; 0) -. y2 expj-[a + X~ ~(t)xi U;t)J

The recursive procedure used to estimate the parameters (a, fi3, ... ,I) is

described in Gaver and Jacobs [1991].
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APPENDIX B

THE COVARIATES

In this Appendix we list the covariates that were considered. As before let

Ui(o;t) and Ui(f;t), (respectively Vi(o;t) and Vi(f;t)) denote the observed and

first-guess u-wind (respectively v-wind) component at time t for location i,

i = 1, ... , S. The covariates considered for the first-guess error of the u-wind

component are

ai(o,U;t)=IUi(o;t)-Ui(o;t- -

aj(f,U;t) - IUi(f;t)- Uj(f;t - 1)

a (U;t)- =IU((f;t)- U(o;t-1

Wi(O;t) =[ui(O;t)9 + Vi(o;t)2 ]

W )(f;t)=[Ui;t)2 + V(f;t)2 ]

ri V;t) = [[ui(o;t) - Uji(f;t - 1)]2 + [Vi(o;t) - ViVf;t-1 -)I'

r. (t) = [[ui(f; t) - Ui(o;t - 1)]2 + [Vi(f; t)- V 1)]2]2

m(f; t) = max(U(f; t), V(f; t)).

The covariates considered for the first-guess error of the v-wind

component are

12



ai (f ,V;t) = 1V3(f; t) -Vi (f ;t - 1

a (V;t0 = Mvi(f;t) - Vi (0; t- IAj

wi(o; t),w,(f; t), rj(o; t),ri~(f; t), and ri*(t).
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